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The difficulties which arise when we try to integrate 
the fundamental equations of hydrodynamics, and which 
are due to their complicated, nonlinear form, have long 
since forced branches of this science to abandon the 
classical theoretical lines of work for new and more fertile 
practical methods. The impossibility of expressing in a 
satisfactory mathematical way the laws and the influ- 
ences of the disturbing phenomena which we 

tributed to this change. In  naval architecture and in (2) 

m*nY Years- I need Only to remind the reader. Of where notations similar to those in equation (1) are used. 
EBel's f&3mOUS experiments for determinating the reSlSk With the above g;ven values for length and time scales, 
ance of air a g h t  dserently shaped bodies. Through we easily obtain the following relations between corres- 
the invention of airships and airplanes these methods ponding quantities in A' and A: 
have gained an increased importance. The circulation 

m nowadays deterrmned by means of model expen- (3) 
ments in wind tunnels; from these observations the cor- 
responding data for full scale airplanes are obtained . 

through an easy computation. Introducing the kinematic coefficients of viscosity, 
The possibility of this full scale computation depends 

entirely upon the existence of &m&r motions. Following v' =< and v = ! ~  we see that (1) can be written in the 
closely the methods of Bairstow (l), I shall here try to form 
develop the fundamental conception of dynamic simG 

be described by the three hydrodynamical equations 
(supplemented by the equation of continuity and certain 

the following form in the case of the motion of an incom- 
pressible fluid under no external forces referred to an 
inertial frame: 

(1 1 

Here p' means the density, p' the pressure, p' the vis- 
cosity, u', v', and w' the components of velocity along 
the axes of x', y', and z'; t' is the time. 

For we have the expression 

that corresponding to any of the instantaneous c o d g  
urations of stream lines and isobaric surfaces in da') 
there could be found a similar configuration in (A).  
The sequence of corresponding states of motion generally 
runs at  different rates in the two spaces; the ratio be- 
tween corresponding times in (A') and (A)  or the time 
scale may be called T.  

The equations of motion for the space A have the form 
p a T = - - + p  a,u s p  [;; -+-+e ;; PU] Y 

include under the name of turbulence, has 

aerodynamics, experimental methods have been used for 6X 

and pressure distribution around wings and propelley d;~' = L&, ay' = u y ,  az' = ~ d z ,  ai' = Tat 
L au' L au ~ z c '  1 PU u'=- u, -=- 
T dt' T 2 Z '  62'1=LTGa 

P P 

The movement of a fluid within a given space (A') can T2 dt 
L au ap' i i ap 

p' d p  E ~ G + Y .  LT r2 ~ x z + ~ + -  s2u 21 - _= _ _  _.  zarity. 

or 
boundary conditions). The b t  of these equations has (Ib) 

If now the two motions are similar, the equations (lb) 
and (2) must be identical; thus we obtain the following 
necessary conditions 

(4a) 

Let us denote by 27' a characteristic velocity and by D' a 
characteristic length in A'; letting U and D be the 

auf corresponding quantities in A .  The condition (4a) can 
then be written 

v' T P P d P '  
v La p' La d p  
- - = I ;  (4b) - - - =1 

27'0' UD -=- aut z = 6 t ' + u '  -+u' -+w' - (5) V' Y 
b~' 6~' 6~' 

aut v' 

62' ax' 6y' 
is a nondimensional pure number, which gener- 

ally is denoted as Reynold's number. A condition 
necessary for dynamical similarity is therefore, that the 
two systems should have the same Repold's number. 

If we suppose the two liquids and the length scale L 
to be given, the condition (4a) will, obviously, fix the 
time scale. 

Thus means the d-component of acceleration of an 
individual fluid element. 

We now demand s b d a r  movement of another liquid in 
1 a similar space (A), the linear dimensions of which are E 

of the dimensions of A'. By similarity we then mean, 
468ea8t-l 237 



238 MONTHLY WEATHER REVIEW JUNE, 1926 

The ratio between corresponding pressure differences 
in (A') and ( A )  can be obtained from (4b), whic.h may be 
writ ten 
( 6 4  

or 
(6b) 

The equation (6b) does not involve a new condition but 
could easily be derived through a consideration of dimen- 
sions. 

Froin the forin of Reynold's number a conclu sion ' can 
be drawn, which later will prove to be of a certain ini- 
portance. If we magnify the linear dimensions of a 
system, the Reynold's number will change in the same 
way as if we had kept the dimensions constant but 
diminished the coefficient of viscosity. We may there- 
fore conclude that the influence of internal friction more 
and more decreases with increasing dimensions of the 
system considered. 

Until now we have considered motions which take 
place solely under the influence of internal forces, viz, 
pressure gradients and friction. Atmospheric move- 
ments are however essentially determined by the action 
of gravity @). If this force be introduced we obtain a 
new relation between L and T .  The equation for the 
motion along the vertical axis takes the form 

or 

T2 After multiplication with 

(4a) and (4b) the equation (7b) can be reduced to 

and reductions by means of 

- = - - - -x g + .[@ + 2 + -2 (7c) at p 6 z  liaw 6x 62w 6.2 ""-'I aw 16p ~2 

The corresponding equation for the space A can be 
written 

dW=-l!P- g + Y r$ + 5 6y2 + 91 62 
(8) & p 62 

Comparing (7c) and (S), which must be identical in the 
case of similarity, we obtain as a necessary condition 
(90.1 L= T2 
or 

U'2 g 2  

D - D  
Combining (sa) with (4a) we see that our liberty in the 
choice of scales and model fluid has now become very 
restricted. If the model fluid is given, the conditions 
(4a) and (9a) will fix the two scales. 

It may now be. questioned whethe.r the introduction 
of the deviating force of the earth's rotation will lead to 
any new necessary conditions. The answer is easily 
obtained. This force is proportional to the angular 
velocity (a') of the earth a t  t'he latitude considered. 
To obtain similarity we must obviously give the model 
vessel a certain angular velocity, which may be denoted 
by 9. Now, Q' and Q have the dimensions of an inverse 
tune; they must therefore fulfill the relation 

(10) 
a'=+? 1 

However, since we are able within a wide range to give 
the vessel arbitrary angular velocities, this condition will 
not restrict our choice of scales and model fluid. 

The practical value of the conception of dynamic 
similarity obviously lies in the fact that we in some cases 
may be able tjo observe and measure, in a model experi- 
ment, quantities which in the original space A' are 
beyond our reach. Multiplying the observed data by 

certain powers of - Y  L, nnd T, according to the dimen- 

sions of the quantities conside,red, we can then easily 
obtain the required values for the original space, - 

P I  

P 

vide.d the necessary conditions (4a) and (9a) are fulfil Y ed. 

Suppose now, that we have observed a certain synoptic 
distribution of density and velocity in the atmosphere. 
,4s already pointed out, it is generally impossible to com- 
pute mathematically the movements which will develop 
from this original state. However, if we are able to 
imitate in a model (A)  the observed initial conditions, 
this spnce will act as a kind of mechanical integrator. If 
we then study and measure the model movements by 
means of a motion-picture camera, certain computations 
will give us the corresponding states of motion in the 
atmosphere. 

In the attempt to apply this method to nieteorological 
problems, several serious diEculties will arise. Most 
atmosphe,ric movements take place under simultaneous 
gain and loss of heat, and these thermal processes often 
have a marked influence upon the state of motion. The 
above suggested method would therefore require the 
extension of the conception of similarity also to the 
thermal phenomena, which would be impossible. 

Even if we limit our study to pure adiabatic move- 
ments, the compressibility of t-he air will introduce a new 
condition necessary for dynamic similarity. However, 
in the large atmospheric movements, which are princi- 
pally horizontal, the idhence of compressibility can 
generally be neglected; in which case the new condition 
may be disregarded. 

Proceeding now under this assumption, the air as 
studied by us is reduced to an incompressible fluid. 
Provided the two conditions (4a) and (9a) are fulfilled, 
we then ought to be able to use model experiments 
in the study of this atmosphere. However, our lib- 
erty in the choice of model fluid and scales is so re- 
stricted by these two conditions, that the experiments 
become practically impossible. We will therefore limit 
our study to problems in which the atmosphere to a 
first approximation may be regarded as an ideal, non- 
viscous fluid. It has been pointed out above that the 
influence of viscosity will increase as the dimensions of 
the system decrease. Thus, even if this assumption be 
justified for the atmosphere,. it is a question whether it 
will apply to the model movements; a satisfactory answer 
can probably be obtained only from the experiments 
themselves. It will obviously be necessary to use 
for the experiments liquids which are as fluent as pos- 
sible. In any case the viscosity will play a much greater 
r6le in the model (A)  than in reality; no numerical con- 
clusions as to  the rate of dissipation of kinetic energy 
could, therefore, be drawn from measurements in (A) .  

We have now reduced the atmosphere to an ideal, 
incompressible liquid. Of the conditions for dynamic 
similarity only one remains, vie: 

L=T2 
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Suppose now, that the movements which we intend to 
study extend over a horizontal area of about 2,000 km. 
in diameter, i. e., about the distance between Key West 
and New York. In vertical direction they reach the 
upper limit of the troposphere, i. e., about 10 km. high. 
If we construct a model of this space, using a len th scale 

spond to a circular liquid layer of only 1 cm. thickness 
but with 2 m. diameter. In order to imitate air masses 
of different temperature we have to use nonmiscible 
liquids of slightly different densities. Due to the small 
thckness of the liquid layers considered, their move- 
ments will become strongly influenced by surface tensions 
and irregularities a t  the bottom of the model vessel. 
Obviously the small height of the atmosphere compared 

. with its horizontal extension acts as a great obstacle 
against the use of model experiments in dynamical 
meteorology. 

To avoid this di%icultp we will now assume, that the 
vertical velocities and accelerations may be neglected 
in the dynamical equations. In  most large-scale atmos- 
pheric movements this assumption is justified. The 
equations of motion in (A') will then take the following 
form : 

dt' &' 
(11) 

of L=lOB, this portion of the atmosphere wou B d corre- 

~- - -- 6P' p'dzc' 

pfg' -- 6P' 
62' 

We now seek a corresponding state of motion in a model 
space (A). This space is obtained by using one length 
scale, L, for horizontal distances, and another, I ,  for the 
veftical, the time scale, as before, being T. Thus we 
get: 

(12) a+&, ay'=uy ,  aZ1=iaZ, at'= Tat 

We will now show, that under the above assumption 
(neglecting the vertical velocities and accelerations in 
the equations of motion) dynamical similarity may be 
obtained, provided one necessary condition is fulfilled. 
By means of (12) the equations (11) can be transformed 
into : 

The corresponding equations for the model experiment 
are : 

au sP 
p z = - -  6X 

(13) 

Since the systems ( l lb)  and (13) must be identical, we 
have : 

vertical P 

Dynamic similarity obviouslv implies the condition that 
these two quantities be equal. We therefore obtain as a 
necessary condition: 

L2 1'Tz 

This equation can be regarded as a generalization of 
(sa). If we put l=L, the two conditions become identi- 
cal. (15) may be written in the form 

and is then open to a simple physical interpretation. 
Denoting two characteristic horizontal and vertical 
distances by D' and h', corresponding respectively to 
D and h, and a characteristic velocity by U', correspond- 
ing to 0, we obtain 

In this form the condition (15) denotes that the horizontal 
accelerations of the model movements will be magdied 
at  the same rate as the vertical dimensions of the model 
are exa gerated. 

The formula (15) can be applied with advantage also 
in comparing atmospheric systems of different vertical 
dimensions, especially in cases where the deviating force 
of the earth's rotation can be neglected. Suppose that 
we wish to determine the velocity with which a body of 
cold air, surrounded by warmer and li hter air, is dilatin 9 horizontally. Comparing two such % odies, the vertica 

1 dimensions of which have the ratio 1 , we see from (15), 

that the ratio between corresponding horizontal velocities 

is T= 41 ; that is, the horizontal velocity of a cold wave 

should be proportional to the square root of its height. 
Thus we find again in a more general way a result, which 
previously and by other means has been derived by 
E.mer (2). In cases where the deviating force must be 
taken into consideration, the condition (15) reduces to 

L 

(15d) z=L=, 

since the time scale T now is equal to 1. This formula 
can be interpreted in the following way: 
Ij we take any complete atmospheric stem, a cyclone 

surrounded by homogeneow air at rest, T r  instance, and 
magnify the horizontal dimensions L times, the vertical 
dimensions 1 times, then the original and the new system 
are dynamically similar, provided l=La. In two dynami- 
caUy similar atmospheric systems the ratio between corre- 
sponding horizontal velocities is e q d  to the square root of 
the ratio between corresponding vertical dimensions. 

As an application and test of the condition (15) we 
will solve the following problem. A liquid in (A') is 
rotating about a vertical axis with the angular velocity 
52'. In  the model vessel (A) another liqmd is rotating 
with the angular velocity 52. It is to be shown that the 
free surface in (A) can be obtained from the free surface 
in (A') by use of the transformation 

(16) x'=L;C, y'=Ly, Z' 312, t '= Tt' 
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The free surface in (A') is a surface of constant pres- 
sure. We have 

p'"'(2'' + y'2) 
2 p' = const. - p'gz + 

Thus, omitting a constant, we have a t  the free surface 

For the free surface in the model space (A)  we obtain in 
the same way 

Q2 

29 
z=- (2"yY2) 

To show that the latter surface can be derived from the. 
former through the transformation (16), we must first 
determine the time scale. Since angular velocity has 
the dimension of an inverse time, we have 

1 (19) = TQ 

Thus we obtain from (16), (17) and (19) 

Since, according to (15), 

"ip L' 

the equations (20) and (18) become identical, p. e .  d. 

Making allowance for (15), we will now c,onstruct a 
model vessel suitable for our experiments. As is well 
known, atmospheric movements are to a considerable 
extent determined by. the deviating force of t,he e.arth's 
rotation. Our first task is therefore to imit,ate this force 
in a convenient way. This can be done by niaking the 
experiments in a vessel, rotating about a vertkal axis a t  
an angular velocity Q of say, rL rotations per minute 

Q=- - Now the earth's surface is everywhere 

orthogonal to the apparent gravity. This would not be 
the case in a rotating vessel with plane bottom, since the 
rotation produces a horizontal, outwardly directed centri- 
fugal force. The equipotential surfaces for the resultant 
of gravity and centrifugal force are paraboloids of the form 

( "6"o") 

In order to produce dynamic similarity we must give the 
bottom of the vessel the form of an equipotential sur- 
face. For this purpose the following procedure, sug- 
gested by Professor Humphreys, may be useful. The ro- 
tating vessel is partly filled with melted paraffin, the free 
surface of which will gradually assume the form (22). 
Keeping the vessel in rotation until the paraffin is solidi- 
fied, we obtain the bottom form desired. This method 

has the additional advantage that the surface form can 
easily be changed when a new speed of rotation is chosen. 

Suppose, that the atmospheric phenomena which we 
intend to study take place at  about 45' north latitude 
within a circular area of 4,000 km. diameter and are 
entirely restricted to the troposphere (10 km.). Using 
a height scale of 

and a length scale of 

we obtain for the time scale 

Z= 25.10' 

L = 2.106 

T=4. l o 3  
The portion of the atmosphere considered will then be 
imitated by a circular liquid layer of 4 cm. thickness and 
2 m. diameter. Since the angular velocity Q' of the 
earth at  Xio north latitude has the value 

2n- sin45O 
24.60.60 

Qf = 

the number of rotations (n) may be determined from the 
equation 

2a sin45O 1 2n-n 
24.60.60 4.103 60 

n=1.96 

--=-. ~ 

or 

The corresponding angular velocity is 
Q=0.205 

From the values of L and T the following relation be- 
tween corresponding velocities is obtained : 

L 
U' = - U- 5.10' T -  

Thus an atmospheric velocity of 5 in. p. s. will give a 
model velocity of 1 cm. p. s. 

The exaggeration of the vertical dimensions in the 
model is given by 

L 2.106 -8 
-25.10' 

Using the previously derived numerical value of Q we 
can easily c.ompute the, elevation of the paraboloid (21) 
above the horizontal plane z=O. In a distance of 50 
cni. from the axis this elevation is only 0.5 mm. and 
amounts at the edge of the vessel to 2 mm. 

The numerical constants of the model vessel are pre- 
sented in Table 1. 

TABLE 1.-Numerical constants of the m.odcl vessel 
Lengt.h scale ( L ) .  ............................................................ ?X10(. 
Verticxl scale ( I ) .  ............................................................ 25x101. 
Exaggeration of hriyht (-r) L ................................................ 8. 

\.I 
Time scale (T) ............................................................... 4x101. 
Rotations per min. ( 1 1 )  ....................................................... 1.96. 
bngular relocity_tQ) ......................................................... 0.205. 
velocity scale (-) L 5x101. 

......................................................... T 
Height of troposphere (IO km.) in model ..................................... 4 cm. 
Dinineter of system (4,ooO km.) in model ..................................... 2 m. 
Bottoiu elemtion 50 cm. from axis .......................................... 0.5 mm. 
Bottom elevation 100 CUI. lrom axis .......................................... 2.0 mm. 
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